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SUMMARY

The majority of riboswitches are regulatory RNAs
that regulate gene expression by binding small-
molecule metabolites. Here we report the discovery
of an aminoglycoside-binding riboswitch that is
widely distributed among antibiotic-resistant bacte-
rial pathogens. This riboswitch is present in the
leader RNA of the resistance genes that encode the
aminoglycoside acetyl transferase (AAC) and amino-
glycoside adenyl transferase (AAD) enzymes that
confer resistance to aminoglycoside antibiotics
through modification of the drugs. We show that
expression of the AAC and AAD resistance genes is
regulated by aminoglycoside binding to a secondary
structure in their 50 leader RNA. Reporter gene
expression, direct measurements of drug RNA
binding, chemical probing, and UV crosslinking
combined with mutational analysis demonstrate
that the leader RNA functions as an aminoglyco-
side-sensing riboswitch in which drug binding to
the leader RNA leads to the induction of aminoglyco-
sides antibiotic resistance.

INTRODUCTION

The aminoglycoside antibiotics have played a historically impor-

tant role in the treatment of serious bacterial infections. They

bind to 16S rRNA in the decoding region of the 30S ribosomal

subunit at the A site and cause mistranslation of mRNA and

inhibit translocation (Davies and Davis, 1968; Fourmy et al.,

1996; Carter et al., 2000). Originally isolated as natural products,

they have been progressively developed to combat the spread of

antibiotic-resistant infections through first and now second

generation semisynthetic approaches (Armstrong and Miller,

2010). The cationic amine groups of the aminoglycosides give

them the propensity to bind to negatively charged pockets in

structured RNA (Hermann and Westhof, 1999), and additional
68 Cell 152, 68–81, January 17, 2013 ª2013 Elsevier Inc.
binding sites have been found in rRNA (Carter et al., 2000;

Borovinskaya et al., 2007). Binding sites have also been identi-

fied in the HIV trans-activating-region and Rev response element

(Zapp et al., 1993) and in auto catalytic ribozymes (von Ahsen

et al., 1991), and drug binding at such sites can induce confor-

mational changes in the RNA (Davis et al., 2004; Murchie et al.,

2004). Their potential to mold RNA structures has been exploited

to generate RNA aptamers (Famulok and Hüttenhofer, 1996).

Resistance emerged shortly after their introduction and is

associated with the mobile elements on plasmids or integrons

responsible for transmissible multidrug resistance (Liebert

et al., 1999). Integrons were originally discovered through the

proliferation of antibiotic resistance (reviewed in Mazel, 2006).

Aminoglycoside resistance is conferredmost commonly through

enzymatic modification of the drug or of the target rRNA through

methylation or by the overexpression of efflux pumps (Nikaido,

2009). Enzymatic inactivation of the drugs is achieved through

either N-acetylation (by acetyl transferases), O-adenylylation

(by adenyl transferases), or O-phosphorylation (by phospho

transferases) of amine or hydroxyl groups by specific enzymes

(Figure 1A) (Mingeot-Leclercq et al., 1999). Induction of resis-

tance genes by many classes of antibiotics has been studied

for several decades (Lovett and Rogers, 1996) although the

molecular details of the mechanism of induction are not yet

completely understood. Resistance to the aminoglycosides is

known to be inducible (Swiatlo and Kocka, 1987; Mingeot-

Leclercq et al., 1999). The best characterized example of

induction of ribosomal antibiotic resistance is the induction of

the erythromycin resistance methyltransferase ERMC. A key

feature of the ermC system is ribosomal stalling during the

course of translation of a leader peptide through nascent leader

peptide-ribosome interactions (Dubnau, 1984; Weisblum, 1995;

Vazquez-Laslop et al., 2008).

Over the last decade small-molecule RNA interactions have

been identified as ameans of regulating gene expression. Ribos-

witches are regulatory RNAs that bind small-molecule metabo-

lites and cofactors; they exploit specific interactions between

low-molecular-weight metabolites and noncoding regions of

messenger RNAs to regulate the biosynthetic pathway of the

metabolite (Mandal et al., 2003; Nudler and Mironov, 2004;
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Grundy and Henkin, 2006). They utilize a simple feedback mech-

anism whereby the interplay between two distinct structures in

the mRNA controls the level of gene expression, in response to

cellular conditions. The equilibrium between competing struc-

tures can be controlled by environmental conditions such as

fluctuations in metal ion concentrations (Cromie et al., 2006;

Dann et al., 2007), changes in pH (Nechooshtan et al., 2009),

or temperature (Johansson et al., 2002). They show precise

selectivity in controlling the expression of the biosynthetic

enzymes of a range of metabolites that represent an assortment

of chemical types ranging from relatively largemolecules such as

coenzyme-B12 (Nahvi et al., 2002) down to small amino acids

like Lysine (Grundy et al., 2003; Sudarsan et al., 2003).

Here, we show that the expression of aminoglycoside antibi-

otic-resistance genes is controlled by a riboswitch. The amino-

glycosides bind to the leader region of the aac/aad mRNA and

cause a significant conformational change, leading to induction

of a reporter gene. Aminoglycoside-RNA crosslinking and muta-

tional analysis of the leader mRNA reveals the structural features

that are important for antibiotic binding.We demonstrate a ribos-

witch mechanism of induction of aminoglycoside resistance

genes in which antibiotic binding induces translation of the

resistance gene.

RESULTS

A Conserved Sequence in the 50 Leader RNA of
Aminoglycoside Antibiotic-Resistance Genes
Resistance to the aminoglycoside antibiotics is most commonly

achieved through modification of the antibiotic by specific

enzymes (Figure 1A) (Mingeot-Leclercq et al., 1999) but can

also be conferred by modification of the target site in rRNA or

through excretion of the drug (Nikaido, 2009). We analyzed the

50 leader RNA of a representative set of 50 aminoglycoside resis-

tance genes from drug-resistant strains (Table S1A available

online). Multiple sequence alignment (Larkin et al., 2007) of the

50 leader RNA regions revealed that the leader RNA of two

aminoglycoside acetyl transferase (AAC) and three aminoglyco-

side adenyl transferase (AAD) genes within this gene set show

significant sequence identity (Figure 1B). The leader RNA has

putative short open reading frames (ORFs) that encode leader

peptides embedded upstream of the resistance gene, consisting

of a ribosome-binding site (SD1) and start and stop codons for

the leader peptides and a second ribosome-binding site (SD2)

and start codon for the AAC/AAD coding sequences. The leader

RNAs are predicted to adopt stable secondary structures. The

sequence was found to be widely distributed upstream of aac

and aad genes in the antibiotic-resistance (R) plasmids that

confer multidrug resistance among a number of clinically impor-

tant pathogens (Liebert et al., 1999; Hall et al., 2007; Nikaido,

2009). Leader RNA sequences from a range of organisms are

shown in Figure 1C and Table S1B (the full sequence alignments

are shown in Data S1). Further analysis of this RNA sequence

revealed that nucleotides 1�39 were identical throughout the

antibiotic-resistant strains, whereas the following nucleotides

were more variable (Figure 1C). Significantly, the presence of

identical nucleotides (1�39) upstream of two discrete classes

of antibiotic-resistance genes, encoding an N-acetyl transferase
and an O-adenyl transferase, respectively, for a number of

bacterial strains suggests that there might be a common regula-

tory mechanism for expression of these enzymes.

The Aminoglycosides Induce Reporter Gene Expression
through the 50 Leader RNA of aac/aad
The natural promoter and transcription start site of aac in

Pseudomonas fluorescens has been identified (Jacquier et al.,

2009). There are 126 nucleotides (nt) from the transcription start

site to the coding sequence of the resistance protein and 75 nt

from the first SD1 to the coding sequence. To investigate

whether the 50 leader RNA of aac/aad has a regulatory role, we

constructed reporter plasmids pGEX-leaderRNAaac/aad-lacZa

in which the leader RNA (126 or 75 nt) was under the control of

the IPTG-inducible tac promoter (Ptac) and positioned upstream

of a b-galactosidase (b-gal) reporter gene. This construct

does not include the AAC/AAD protein. The controllable Ptac

promoter enables careful analysis of leader RNA function (Bailey

et al., 2008). The reporter plasmid was transformed into E. coli

strain JM109 and b-gal activity was examined in the presence

of aminoglycoside antibiotics by agar diffusion assays. Strains

containing the aac genes are typically resistant to the 4,6

deoxystreptamine aminoglycosides; kanamycin B (KanB), siso-

mycin, tobramycin, netilmycin, gentamycin, amikacin (Mingeot-

Leclercq et al., 1999). We therefore used these drugs for agar

diffusion assays. The 4,5 deoxystreptamine derivatives ribosta-

mycin and paromomycin, and neamine, a fragment molecule

were used as controls. Initially, we performed agar diffusion

assays using the reporter plasmid containing the 126 or 75 nt

leader RNA in the presence of IPTG and antibiotics (KanB, siso-

mycin, ribostamycin, and neamine). For constructs containing

the 126 or 75 nt leader RNA, we observe induction of reporter

gene expression with KanB and sisomycin but not with ribosta-

mycin or neamine (Figures 2A and 2B). A more detailed investi-

gation with all controls was therefore carried out using the

reporter plasmid containing the 75 nt leader RNA. On titration

of the 4,6 deoxystreptamine antibiotics a blue-green circular

zone of induction is visible around the filter for KanB and

sisomycin (Figure 2D), and also for tobramycin, netilmycin,

gentamycin, and amikacin (Figure S1A) but not for the control

molecules ribostamycin, neamine (Figure 2D), or paromomycin

(Figure S1C). No induction by KanB was observed in cells trans-

formed with the reporter plasmid without IPTG (under conditions

in which the Ptac promoter is inactive) (Figure 2C) and no induc-

tion was observed on plates without KanB (Figure 2C) or the

other aminoglycosides (data not shown). To verify that the induc-

tion of the reporter is specific for the leader RNA, we performed

analogous experiments on a control plasmid pGEX-leader RNA-

cat-86-lacZa in which the leader RNA of the cat-86 (encoding

chloramphenicol acetyltransferase) (Duvall et al., 1984) gene re-

placed that of aac/aad gene and found this control construct to

be unresponsive to addition of KanB (Figure 2C). To further

confirm and quantify the agar diffusion assay, we also measured

b-gal activity in solution (Zhang and Bremer, 1995) for KanB, si-

somycin, ribostamycin, neamine, and paromomycin. The solu-

tion measurements of b-gal activity are in good agreement with

the plate based agar diffusion assay (Figures 2E, S1B, and

S1D). Significantly, these results show that the 4,6
Cell 152, 68–81, January 17, 2013 ª2013 Elsevier Inc. 69
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Figure 1. A Highly Conserved Sequence in the 50 Leader RNA of Aminoglycoside Resistance Genes

(A) Structure of KanB (KanB), arrows indicate the positions that resistance acetyl transferase (AAC) (cyan), phospho transferase (APH) (red) and adenyl trans-

ferases (AAD) (yellow) modify.

(legend continued on next page)
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deoxystreptamine aminoglycosides (such as KanB or sisomycin)

can induce expression of the reporter gene and that the leader

RNA is required for induction. However, none of the 4,5 deoxy-

streptamine aminoglycosides ribostamycin, neamine, or paro-

momycin induced the reporter gene (Figures 2D, S1C, and

S1D). Thus induction of reporter gene expression requires the

presence of specific aminoglycosides and the leader mRNA,

suggesting that the interaction of the specific aminoglycosides

with the leader RNA may have a role in the induction of the resis-

tance protein.

The Aminoglycosides Induce a Change in the Leader
RNA Structure
To investigate the secondary structure of the leader RNA,

we performed in-line probing, DMS probing and selective

20-hydroxyl acylation analyzed by primer extension (SHAPE) on

the 75 nt RNA in the absence of KanB by capillary electropho-

resis with fluorescence detection. The data from the three

independent probing methods are shown in Figure 3B and in

combination with computational folding a potential RNA

secondary structure was predicted (Figure 3A). To investigate

the effect of drug binding on the leader RNA structure, in-line

probing was further carried out on the 75 nt RNA on titration of

KanB (Figure 3C). In response to KanB titration, some nucleo-

tides show progressively increased or decreased cleavage and

nucleotide scission is generally increased at the 30 end (where

SD2 and AUG is located) and decreased at the 50 end (SD1)

(Figures 3A and 3D), suggesting that KanB induces a structural

transition. In particular, on titration of KanB fragmentation at

SD2 is increased, implying that KanB causes changes in the

RNA structure such that SD2 may become more accessible

(Figures 3C and 3D). Similar results are observed by in-line

probing of the 75 nt RNA on titration of the inducing antibiotics

such as sisomycin and amikacin (Figures S2B and S2C). In

contrast, the pattern of fragmentation remains unchanged with

control antibiotics with no increase in cleavage at SD2 (Figures

3C and S2A). DMS probing of the 75 nt RNA with KanB is also

consistent with the in-line probing data (Figure S3C). In-line

probing of the full-length 126 nt RNA on titration with KanB

show that the fragmentation patterns between SD1 and the

resistance protein start site (that correspond to the shorter

75 nt RNA) are similar to those of the 75 nt RNA, suggesting

that the folding and function of the 75 nt RNA is independent

of the upstream sequence (Figures S3A and S3B). In reporter

assays, KanB induces reporter gene expression from both the

75 and 126 nt RNAs. The 75 nt RNA can therefore be considered

a minimal functional RNA. From the in-line probing data of the

126 nt RNA, we also observed increased accessibility at SD2

(Figures S3A and S3B). These data together suggest that amino-

glycoside binding to the leader RNA causes a change in the RNA
(B) Multiple sequence alignment of the leader RNA sequence; unrooted dendro

(cyan), APH (red), AAD (yellow), rRNA methyl transferases (blue) or efflux pumps (

are circled.

(C) Organization of the leader RNA of aac/aad in antibiotic-resistance strains; th

(SD1 and SD2), variable regions and resistance genes are marked for key see Ta

See also Data S1.
structure so that SD2 may become more accessible to the

ribosome.

The Aminoglycosides Bind to Specific Regions
of the 50 Leader RNA
To examine aminoglycoside-leader RNA binding directly, we

used surface plasmon resonance spectroscopy (SPR) (Hendrix

et al., 1997). The minimal leader RNA was prepared by in vitro

transcription using T7 RNA polymerase. Biotinylated leader

RNA was immobilized on an SA-biosensor chip and the binding

of each aminoglycoside was measured by flowing them over

the immobilized RNA. The same set of molecules was used

as before. Titration of the antibiotics led to an increase in the

measured response that was consistent with the formation of

an aminoglycoside-RNA complex. Figure 4 shows the dissoci-

ation constants (kD) for aminoglycoside- RNA complex forma-

tion measured by SPR (Figures 3E and S4). Note that tobramy-

cin, KanB, and sisomycin have the highest affinity for the leader

RNA at 2.19, 2.78, and 6.8 mM, respectively, and under these

conditions display noncooperative-binding behavior (with Hill

constants n �1) consistent with the formation of a 1:1 complex

(Figures 3E and S4). In contrast, ribostamycin, neamine and

paromomycin bind with lower affinities at 589 mM, 47 mM,

and 12 mM respectively and ribostamycin and paromomycin

may exploit a different binding mode (n � 0.6) (Figure S4).

Thus, we find that the aminoglycosides that induce reporter

gene expression in the reporter assays induce a conformational

change to the RNA upon binding also display the highest

affinity for the leader RNA in SPR measurements. In contrast,

the control antibiotics display a different pattern of fragmenta-

tion in in-line probing and have the lower affinity for the

leader RNA.

Sisomycin is a 4, 6 deoxystreptamine aminoglycoside

that has an unsaturated double bond between the 40 and

50positions of ring one (Figure 4) and that is suitable for UV

crosslinking to RNA. Drug-RNA UV crosslinks can be mapped

by primer extension (Porse et al., 1999). Sisomycin induces

reporter gene expression (Figures 2A, 2B, 2D, and 2E), binds

to the leader RNA in the mM range by SPR (Figures S4 and 4)

and induces an altered RNA structure (Figure S2B). To identify

the region of the leader RNA that the aminoglycosides bind, we

performed UV crosslinking experiments in the presence of

100 mM sisomycin; RNA was reverse transcribed using a fluo-

rescent primer and sequenced directly. The sites of specific

crosslinks were detected by the position and incidence of

abortive reverse transcripts when compared to UV-treated

RNA in the absence of the drug (Porse et al., 1999), and

a crosslink was identified between A18 and sisomycin, sug-

gesting that A18 may be involved in aminoglycoside binding

(Figures 3F, 3G, and 3A).
gram of 50 aminoglycoside resistance genes including genes encoding AAC

orange) for key see table S1. Two highly conserved AAC and three AAD genes

e highly conserved sequence and relative positions of ribosome-binding sites

ble S2.
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Figure 2. The Aminoglycosides Induce Reporter Gene Expression through the 50 Leader RNA of aac/aad

(A and B) Agar diffusion assays of cells transformed with the reporter plasmid containing the 75 or 126 nt RNA grown on plates with IPTG; each filter disc was

spotted with 1 ml of 100 mM KanB (Kan), sisomycin (Siso), ribostamycin (Ribost), or neamine (Nea).

(C) Control plates for (D); cells transformed with the reporter plasmid containing the 75 nt RNA grown on plate without KanB in the presence of IPTG, cells with the

reporter plasmid grown on plate with 1 ml of 100 mM KanB in the absence of IPTG under conditions in which the Ptac promoter is inactive, cells transformed with

plasmid pGEX-leaderRNAcat-86-lacZa that have the cat-86 leader RNA in place of aac/aad, with 1 ml of 100mM (bottom filter [B]), 10mM (top [T]) and 3mMKanB

(left [L]), and IPTG.

(D) Agar diffusion assay of cells transformed with the reporter plasmid containing the 75 nt RNA grown on plates in the presence of IPTG and titration of ami-

noglycosides. Filters were spotted with 1 ml of 100 mM (B), 10 mM (T) and 3 mM KanB (Right (R), 1 ml of 100 mM (B), 10 mM (L) and 3 mM (T) sisomycin, 1 ml of

100 mM (B), 10 mM (T) and 3 mM (L) ribostamycin, and 1 ml of 100 mM (B), 10 mM (L) and 3 mM (T) neamine.

(legend continued on next page)
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Figure 3. The Aminoglycosides Bind to Specific Regions of the 50 Leader RNA of aac/aad and Induce a Change in the RNA Structure

(A) Predicted secondary structure of the 75 nt RNA by computational folding and structure probing analysis; the start and stop codon of the peptide and the start

codon of the resistant protein are in red, SD1 and SD2 are in blue, the anti-SD is in green.

(B) DMS probing, SHAPE and In-line probing analysis of the 75 nt RNA in the absence of drug.

(C) In-line probing analysis of the 75 nt RNA ± 100 mM KanB and the control antibiotic neamine (100 mM).

(D) In-line probing analysis of position A3, A18, G60, and G62 on titration of KanB.

(E) Change in SPR signal in response units (RU) on KanB binding to immobilized aac/aad 50 leader RNA, inset is a Hill plot of KanB binding and the Hill coefficient

(n). Error bars are standard deviations of at least three independent experiments.

(F) UV crosslinking of sisomycin and the leader RNA * indicates the position of the crosslink.

(G) Enlargement of crosslink site.

See also Figures S2, S3, S4 and Table S3.
Mutational Analysis of the Leader RNA
To investigate the importance and function of the structural

elements of the leader RNA a series of deletions and mutations

were introduced into the RNA (Figure 5A and 5B). The effect of

these mutations on reporter gene induction in the presence of

KanB was determined by reporter assays. The minimal leader

RNAcomprises threepossible loops. For Loop1, a pointmutation
(E) b-gal activity (Miller units) of the reporter gene on titration of aminoglycosides;

0.16, 0.31, 0.63, and 1.25 mMsisomycin, 0, 0.31, 1.25, 2.5, 5, and 20 mM ribostamy

at least three independent experiments.

See also Figures S1 and S7, and Table S2.
in Loop1 (M3) and a mutation that disrupts the stem (M5) result

in a loss of reporter gene induction by KanB. For Loop2, deletion

of Loop2 (M6) eliminates induction of the reporter gene. The

formation of stem 2 is confirmed by the disruptive (M7) and

restorative (M8) mutations in the reporter assay (Loop 2 and

stem 2 are confirmed by the chemical probing data (Figures 3A

and 3B). Loop 3 and stem 3 are also consistent with the chemical
cells were grown in the presence of 0, 2.5, 5, 10, 15, and 20 mM KanB, 0, 0.08,

cin, 0, 5, 10, 50, 100, and 200 mMneamine. Error bars are standard deviations of

Cell 152, 68–81, January 17, 2013 ª2013 Elsevier Inc. 73



Figure 4. The Relationship between Aminoglycoside Structure, Binding Affinity, Charge, and Reporter Gene Induction

See also Tables S2 and S3.
probing data (Figures 3A and 3B). A compensatory mutation to

stem 3 (M20) shows near wild-type levels of reporter gene

induction and deletions to Loop 3 and stem 3 (M9, M14�16,

M19) show reduced levels of induction of the reporter gene.

A18 was identified as a possible binding site for the drug (Figures

3A and 3 F) by UV crosslinking, and the point mutation, M4, at

A18 causes a significant reduction in induction of the reporter

gene. Consistent with this, the mispaired nucleotides A18:C58

and C19:A57 appear to be critical to the function of the leader

RNA; the mutations M21 and M22 that introduce Watson-Crick

base pairs at these positions eliminate induction of the reporter

gene. These mutational data are supported by the chemical

probing data and the crosslinking data. Taken together these

data show the structural and functional importance of stem loops

1�3 and specific structural features for antibiotic binding.

We observe that the ribosome-binding site SD2 (GGAG nucle-

otides 59�62) becomes more accessible toward chemical

probes with the drugs that induce reporter gene expression. In

contrast, accessibility of SD2 shows no change on addition of
74 Cell 152, 68–81, January 17, 2013 ª2013 Elsevier Inc.
drugs that cannot induce reporter gene expression (Figures 3C

and S2A). Furthermore, the nucleotides 66�69 (CUUC) are

complementary to both SD2 and SD1 (GGAG nucleotides

1�4). We therefore speculate that in the absence of the antibiotic

SD2 is sequestered by the anti-SD2 sequence blocking ribo-

somal access. Specific antibiotic binding induces a structural

transition that allows anti-SD2 to pair with SD1 and consequently

frees SD2 for ribosome binding (Figure 6). To assess this

proposed model, we made some mutations to SD1 or SD2 and

anti-SD2 sequence. Predictably M11 and M13, mutations in

the ribosome-binding site SD2, show a significant reduction in

the reporter gene expression, suggesting that function of the

leader RNA is dependent on ribosome recognition and binding.

The mutation M18 to the anti-SD2 that abolishes base-paring

between SD2 and anti-SD2 exhibits a similar level of reporter

gene expression to wild-type leader RNA with the drug. In

contrast, M12, a point mutation to the anti-SD2 sequence that

strengthens the base-paring between SD2 and anti-SD2 shows

a reduced level of reporter gene. The point mutation M1, in SD1,
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Figure 5. Mutational Analysis of the Leader RNA

(A) The positions of mutations in the leader RNA.

(B) b-gal activity of the leader RNA mutations with 10 mM KanB. Mutant RNA activity is expressed as a proportion of wild-type RNA activity. The positions of

potential functional sites in the leader RNA are indicated.

(C) In-line probing analysis of the SD2 in the wild-type and mutant (M1, M3, M4, and M9) leader RNA with KanB. See also Figure S5.

(D and E) The wild-type and mutant (M1, M3, M4 and M9) leader RNAs analyzed by 10% native gel electrophoresis in TBE or with 10 mM KanB. Markers are

double-stranded RNA.

See also Figures S5 and S6, and Table S3.
would prevent ribosome binding at SD1 and also destabilize the

base-paring between SD1 and anti-SD2 in the presence of anti-

biotics and consequently hinder the structural freedom of SD2.

M1 does not induce reporter gene expression. In-line probing

of inactive mutants M1, M3, M4, and M9 show that addition of

KanB has no effect on the RNA structure (Figure S5). On drug

binding, SD2 of wild-type RNA becomes more accessible, but

in M1, M3, M4, and M9, it is unchanged (Figure 5C). This is

consistent with the proposed model and indicates that antibiotic

mediated unmasking of the SD2 sequence is important for the

function of the leader RNA.

Mutations to the leader RNA may interfere directly with drug

binding or they may interfere with correct RNA folding. RNA

structure changes can be detected through differences in their

mobility on electrophoretic gels. We performed gel electropho-

retic mobility analysis on the wild-type leader RNA, M1, M3,

M4, and M9 with or without KanB. KanB induces a conforma-

tional change into wild-type and mutant RNAs. In the absence

of KanB M3 and M4 are relatively retarded in the gel compared

to wild-type RNA, suggesting that point mutations in M3 or M4
affect the conformation of the RNA without the drug (Figures

5D and 5E). Mutational and functional analysis confirms the

main features of the secondary structure of the leader RNA

and the importance of the structural elements within it for amino-

glycoside binding and is consistent with the chemical probing

and crosslinking data.

The Mechanism of the Aminoglycoside Dependant
Induction of Gene Expression through the 50 Leader
RNA of aac/aad
We next examined how aminoglycoside-leader RNA interactions

induce gene expression. Riboswitches can control gene expres-

sion at the level of transcription or translation (Breaker, 2011). To

test the possibility that induction of aac/aad by KanB occurs at

a transcriptional level, we analyzed mRNA abundance of the

b-gal reporter on the plasmid pGEX-leaderRNAaac/aad-lacZa

in response to increasing amounts of KanB by real-time PCR.

Titration of KanB elicits only slight changes in b-gal mRNA

abundance relative to the (AmpR) control (Figure 7A) and there

is no obvious correlation between b-gal mRNA abundance
Cell 152, 68–81, January 17, 2013 ª2013 Elsevier Inc. 75



Figure 6. ASchematic Representation of the ProposedModel for the
Induction of Aminoglycoside Resistance

Aminoglycoside binding to the leader RNA induces a change in the leader RNA

structure such that the Anti-SD2 sequence CUUC base-pairs with SD1

consequently unmasking SD2 for ribosomal binding and translation of the

resistance gene. SD1 and SD2 are colored blue, the anti-SD2 sequence is

green and the start codon of the resistance gene is red.
and the KanB dependant induction of b-gal that we measure

(Figures 2D and 2E). Thus, the main mechanism of regulation

of aminoglycoside-dependent gene expression through drug-

leader RNA interactions probably occurs at the level of transla-

tion and is in agreement with previous observations on the

expression of integron encoded genes (Jacquier et al., 2009).

For the induction of the erythromycin-resistance methyltrans-

ferase ERMC, by macrolide antibiotics, the nascent leader

peptide encoded by its leader RNA plays an important role in

ribosomal stalling (Dubnau, 1984; Weisblum, 1995; Vazquez-

Laslop et al., 2008). The leader RNA also encodes a putative

short leader peptide; to investigate a possible role for the

nascent leader peptide in the induction of aminoglycoside antibi-

otic resistance, we introduced a series of mutations to the RNA

codons of the leader peptide. We made three conservative

mutations (M23, M24, and M25) in which the leader RNA

sequence was altered, but the amino acid sequence of the

leader peptide was retained (Figure 7B). The mutants were

analyzed by reporter assays (both agar diffusion and solution

assays). Although the leader peptide sequence remained unal-

tered, we found that the mutations to the leader RNA completely

abolished or greatly reduced the induction of the reporter gene

(Figure 7C and Figure S6B). If the nascent leader peptide played

a critical role in controlling the expression of the reporter genes,

as it does with ermC, we would not expect to lose induction of

the reporter gene in these mutants. Conversely, the mutations

to the RNA overlap extensively with the region of the leader

RNA that have important structural features for its function (Fig-

ure 5); thus such mutations would be expected to interfere with

induction of the reporter gene. The mutations M23�M25 contain

multiple nucleotide mutations; however, we note that the single-

point conservative mutation that retains the peptide sequence
76 Cell 152, 68–81, January 17, 2013 ª2013 Elsevier Inc.
(M4) also completely abolishes the induction of the reporter

gene and displays similar levels of b-gal activity to the mutations

that inactivate SD1 and SD2 (M1 and M11) of the leader RNA

(Figure 5B). Additionally, a point mutation positioned after the

peptide stop codon (M10) that should produce a normal leader

peptide shows only intermediate instead of full levels of induction

of the reporter gene (Figures 5A and 5B). The deletion mutants

M9 and M14�16 also vary the position of the stop codon of

the putative peptide and also have intermediate levels of reporter

gene induction (Figures 5A, 5B and S6A). These data suggest

that leader RNA/drug interactions have an overriding role in the

regulation of induction of aac/aad expression by the aminogly-

cosides compared to nascent peptide stalling.

Although we have shown that the induction of the reporter

gene does not depend on nascent leader peptide stalling,

a single point mutation (M1) in SD1 (the ribosome-binding site

for the peptide) causes a loss of induction of the reporter gene.

More predictably, a single point mutation (M11) in SD2 (the ribo-

some-binding site of the resistance gene) eliminates induction of

the reporter gene. It is noteworthy that both SD1 and SD2 are

required for induction, suggesting that SD1 may have a role in

the recruitment of the ribosomal small subunit that is part of

the initiation complex for the translation of the resistance gene.

The point mutation A13C (M3) to the putative leader peptide start

codon in Loop 1 (Figure 5A) would be predicted to interfere with

the initiation of leader peptide translation and is also inactive

(Figure 5B). We cannot exclude the possibility that this mutation

may interfere with the formation of the translational initiation

complex. Overall these mutational data suggest that leader

RNA/drug interactions play a dominant role in the regulation of

induction by the aminoglycosides compared to nascent peptide

stalling.

Antibiotic binding by the ribosome has been shown to be

required for the induction of ermC resistance (Gryczan et al.,

1984) and antibiotic binding to ribosomes can also induce

conformational changes that inhibit coordinated interactions

between ribosomal sites (Lentzen et al., 2003; Borovinskaya

et al., 2007; Harms et al., 2008; Ramu et al., 2011). We have

shown a correlation between the induction of translation and

a drug dependant structural transition in the aac/aad leader

RNA. However, aminoglycoside antibiotic activity is caused by

drug binding at the ribosomal A site and leads to a loss in trans-

lational fidelity (Davies and Davis, 1968; Fourmy et al., 1996).

To separate the effects of aminoglycoside binding to the

leader RNA from the effects of drug binding to the A site of the

ribosome, we developed a system in which the ribosomal A

site is protected from drug binding by methylation. The 16S

rRNA methyltransferase RmtB confers resistance to 4, 6 deoxy-

streptamine aminoglycosides through the methylation of N7 of

G1405 (Doi et al., 2004; Yu et al., 2010). We cloned RmtB into the

reporter plasmid to create plasmid pGEX-RmtBleaderRNAaac/

aad-lacZa; cells transformed with this plasmid are significantly

more resistant to KanB (Figures 7D, 7E, and 7F) and the 4, 6

deoxystreptamine aminoglycosides (not shown), but not to ri-

bostamycin or neamine. Without IPTG, no induction by KanB

was observed and no induction was observed without KanB

(Figure 7D). Induction by aminoglycosides of the reporter gene

was then examined in the background of resistant ribosomes



by agar diffusion and solution based assays. Under both condi-

tions, we observed induction of reporter gene expression with

KanB and sisomycin but not for ribostamycin and neamine

(Figures 7E and 7F). A much higher concentration of the

drugs was required due to the presence of the RmtB

genes, and this leads to a tighter zone of induction in the agar

diffusion assays. Hence induction of the reporter gene can also

take place in the presence of resistant ribosomes, suggesting

that the induction occurs independently of antibiotic-ribosome

interactions. The interaction between the aminoglycosides and

the 50 leader RNA therefore controls the induction of the

resistance gene.

The aac/aad resistance genes confer resistance by acetylation

or adenylation of the antibiotic. To investigate the effect of

aminoglycoside modification on induction of the reporter gene,

we cloned the aac (60)-Ib, aminoglycoside acetyl transferase

from Acinetobacter baumannii into the reporter plasmid to

create the plasmid pGEX-AACleaderRNAaac/aad-lacZa. Cells

transformed with this plasmid are resistant to KanB and

sisomycin (Figure 7G). Agar diffusion and solution-based assays

were performed with this resistant strain and the antibiotics

(KanB, sisomycin, ribostamycin, and neamine) with controls as

described before (data not shown). We observed induction of

reporter gene expression on addition of KanB and sisomycin

(Figures 7G and S6), but not for ribostamycin and neamine,

suggesting that acetylated aminoglycosides may still induce

expression of the resistance protein.

DISCUSSION

The data presented here shows riboswitch control of the induc-

tion of the AAC and AAD aminoglycoside resistance genes

through direct interactions between the RNA and the drug, in

which drug binding induces expression of the resistance protein.

To support this, we show that the presence of aminoglycoside

antibiotics induces a structural transition in the 50 leader RNA
of the aac/aad genes that confer resistance to the antibiotics.

The aminoglycosides bind to the RNA with a range of affinities

that correlate with the induction of reporter genes under the

control of the leader RNA. Mutations to the leader RNA that

abolish the induction of reporter genes appear to adopt a

different structure. Induction of resistance gene expression is

consistent with an aminoglycoside induced conformational

change in the leader RNA that unmasks the ribosome-binding

site of the resistance gene. Drug binding within the leader RNA

is associated with a sequence that is highly conserved across

an assortment of antibiotic-resistant pathogens. Taken together,

these results are consistent with a riboswitch model for gene

regulation whereby small-molecule binding to an aptamer

domain modulates expression of the gene leading to the induc-

tion of antibiotic resistance.

The aptamer domain of this antibiotic-sensing riboswitch is

within the highly conserved nucleotides (1�39) of the leader

RNA. Functional analysis of mutant RNAs combined with UV

crosslinking and conformation-sensitive nucleotide resolution

chemical probing confirms the main features of the secondary

structure of the leader RNA and the importance of the structural

elements within it for aminoglycoside binding. The drugs may
bind directly to A18. Drug binding to the leader RNA causes

a significant structural transition in which the ribosome-binding

site GGAG (SD2) appears to become more accessible for the

ribosome, leading to induction of the reporter gene.

As a riboswitch the aac/aad RNA has a number of features that

are common to other well-characterized RNA regulatory mecha-

nisms that control synthesis of the target protein by regulating

access to the ribosome-binding site (Grundy and Henkin,

2006). For example the leader RNA of the transcriptional regu-

lator PrfA that controls expression of virulence genes in Listeria

moncytogenes acts as a thermosensor in which the ribosome-

binding site is masked at low temperatures. An increase in

temperature (on infection) liberates the ribosome-binding site

leading to expression of PrfA and consequent virulence (Johans-

son et al., 2002). The leader RNA of the erythromycin resistance

methyltransferase ERMC and the chloramphenicol acetyltrans-

ferase (Dubnau, 1984; Weisblum, 1995; Lovett and Rogers,

1996) incorporates an additional ribosome-binding site and

encodes a short leader peptide. Induction of resistance to both

of these ribosomal antibiotics exploit ribosome-RNA interactions

through translational stalling at the nascent leader peptide prior

to the initiation of resistance protein synthesis from the second

ribosome-binding site (Vazquez-Laslop et al., 2008). Ribosomal

attenuation also regulates the tnaC cistron of tryptophan catab-

olizing enzymes (Gong and Yanofsky, 2002). Induction of ermC

resistance also requires ribosomes that are sensitive to the

drug (Gryczan et al., 1984). The untranslated region of the ribo-

somal protein S15 contains an autoregulatory binding site for

S15 that downregulates synthesis of the protein through the

stabilization of an alternative fold in the RNA (Ehresmann et al.,

2004) that blocks full access to the ribosome-binding site (Serga-

nov et al., 2003) such that the RNA protein complex is entrapped

in a blocked preinitiation complex with the ribosome (Marzi

et al., 2007).

The aac/aad aminoglycoside-sensing riboswitch may be seen

to have appropriated certain features from these systems. There

are close parallels with the thermosensor RNA (Johansson et al.,

2002), in which conformational changes expose the ribosome-

binding site leading to the expression of virulence proteins.

Although the aminoglycosides differ frommacrolides and pheni-

cols in their ribosomal target sites and mechanisms of antibiotic

action, they employ similar mechanisms for the induction of

resistance through ribosome binding to the leader RNA (Dubnau,

1984; Weisblum, 1995; Lovett and Rogers, 1996; Vazquez-

Laslop et al., 2008). The aac/aad system, however, may have

dispensed with the necessity for leader peptide stalling. The

requirement for a leader RNA ribosome-binding site (SD1),

suggests that ribosome binding to this region is important for

antibiotic dependant induction and that SD1 continues to func-

tion as an access point into the aac/aad RNA for the assembly

of the translational initiation complex. In contrast to ermC

(Gryczan et al., 1984), ribosomes that are resistant to the amino-

glycosides are also capable of inducing resistance through the

aac/aad riboswitch. A conformational change in the aac/aad

RNA that unmasks SD2 would be similar to that observed for

the S15 leader RNA (Serganov et al., 2003) with the corollary

that for S15 the structural transition masks SD1. Analogous

ligand-dependent screening of ribosome-binding sites is also
Cell 152, 68–81, January 17, 2013 ª2013 Elsevier Inc. 77
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Figure 7. The Mechanism of the Leader RNA Activity

(A) Real-time PCR detection of b-gal mRNA transcripts on addition of the indicated amounts of KanB relative to AmpR as an internal control. Error bars represent

the standard deviation of three independent experiments.

(B) Sequence of the wild-type leader RNA and the three mutants M23-25 (mutations underlined). The leader RNA was altered, whereas the leader peptide

sequence remained unchanged.

(C) b-gal activity of M23-25 with 5 mM KanB. Mutant RNA activity is expressed as a proportion of wild-type (WT) RNA activity. The error bars correspond to the

standard deviation of three independent experiments. See also Figure S6B.

(legend continued on next page)
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employed by flavin mononucleotide, S-adenosyl methionine

(S [MK]) and the thymine pyrophosphate dependant regulatory

riboswitches (Mironov et al., 2002; Winkler et al., 2002; Fuchs

et al., 2006). Thus, the aac/aad riboswitch appears to have

assimilated a number of regulatory RNA features to fit the partic-

ular requirements for the induction of resistance to aminoglyco-

side antibiotics.

An antibiotic-resistant riboswitch must be able to detect low

levels of antibiotic and activate the resistance mechanism

before the cells are killed. The aac/aad riboswitch demonstrates

progressive induction of reporter genes in response to sublethal

doses of the antibiotic. Expression of the resistance gene is

delicately balanced; both of the aac/aad reporter constructs

display elevated background levels of reporter gene expression

in the absence of KanB. Intriguingly, although the acetylation

of the drugs blocks their interaction with the ribosome and

confers antibiotic resistance, the modified drugs can still induce

reporter gene expression. This suggests that, to restrict the

build up of unmodified drugs in equilibrium with modified drugs

in the cell, this riboswitch acts to maintain high levels of

the resistance protein as the modified drugs accumulate. The

aminoglycosides are highly efficient inhibitors of translation

and cells would be sensitive to even low levels of unmodified

drugs. This mechanism allows the cells to respond rapidly

to an antibiotic threat and minimizes the commitment of

cellular resources to the production of resistance protein. We

speculate that the simplicity of this mechanism of activation of

antibiotic resistance might be exploited by other RNA-binding

antibiotics.

The conservation and wide distribution of the RNA aptamer

domain sequence of this riboswitch is noteworthy. They are

a constituent of the integron cassette system that accumulates

resistance genes for the resistance (R) plasmids that confer

multidrug resistance (Liebert et al., 1999; Hall et al., 2007;

Nikaido, 2009). The R plasmids are stably maintained within

host bacterial strains from which they can be efficiently trans-

ferred to other drug-sensitive cells. The accumulation of multi-

drug resistance on R plasmids is a significant clinical threat

(Taubes, 2008). Riboswitches have previously been character-

ized as chromosomal regulatory elements (Mandal et al., 2003;

Nudler and Mironov, 2004). The presence and stability of an

antibiotic-sensing riboswitch found as an integral part of

a multiple copy, transmissible plasmid suggests that they have

an important role in antibiotic resistance. Riboswitches have

been regarded as relics from an RNA world (Joyce, 2002). The

propagation of this novel riboswitch throughout pathogenic

bacteria over the relatively short time-scale of the last 60 or so

years, coupled with the recently established role of riboswitches
(D) Control plates for (E); cells transformed with the plasmid pGEX-RmtB leaderR

absence of IPTG (when the Ptac promoter is not active) with KanB and without b

(E) Agar diffusion assay of cells transformed with plasmid pGEX-RmtB leaderRN

drugs used on the plates are KanB (10 ml 1 M), sisomycin (10 ml 1 M), neamine (5

(F) b-gal (Miller units) activity of pGEX-RmtB leaderRNAaac/aad-lacZa in the pre

sisomycin.

(G) Agar diffusion assay of cells transformedwith plasmid pGEX-AAC-aac-lacZa g

1 M), sisomycin (10 ml 1 M), neamine (5 ml 100 mM) and ribostamycin (5 ml 100 m

See also Figures S6 and S7, and Tables S2 and S3.
in fundamental cellular processes, suggest that novel riboswitch

functions will continue to emerge.

EXPERIMENTAL PROCEDURES

Detailed protocols for all sections are described in Extended Experimental

Procedures.

50 Leader RNA Sequence Analysis

Sequences of five representative sets of bacterial genes that confer resistance

to the aminoglycoside antibiotics were obtained from NCBI. These included

acetyl transferase, phospho transferase, adenyl transferase, rRNA methyl

transferase, and efflux pump genes. The 50 leader RNA sequences were

used for multiple sequence alignment. This analysis identified a series of

homologous sequences within the gene sets and further sequence alignments

identified them to be present within antibiotic-resistant pathogens.

Generation of Reporter Constructs

The reporter plasmid pGEX-leaderRNAaac/aad-lacZa (75 or 126 nt RNA) was

constructed, with an IPTG-inducible Ptac promoter and the aac/aad leader

RNA upstream of a lacZa gene and transcription terminator; the derivative

pGEX-leaderRNAaac/aad-RmtB-lacZa contains the RmtB gene (Yu et al.,

2010) and pGEX-AAC aac-lacZa contains the AAC gene (Figure S7).

Agar Diffusion and b-Galactosidase Assays

Discs of 3MM paper spotted with different amounts of antibiotic were placed

onto agar plates inoculated with pGEX-leaderRNAaac/aad-lacZa (75 or 126 nt

RNA) transformed cells and incubated at 37�C for at least 18 hr (Bailey et al.,

2008). b-Galactosidase assays were performed as previously described

(Zhang and Bremer, 1995).

Surface Plasmon Resonance Spectroscopy

In vitro transcripts of aac/aad RNA (75 nt) were 30 end labeled with biotin (Wu

et al., 1996). Aminoglycoside-RNA binding was measured by SPR (Hendrix

et al., 1997).

Chemical Probing of RNA

The wild-type leader RNA or mutant transcript RNA with 30 and 50 linkers was

subjected to in-line probing, DMS probing, and SHAPE analysis in the pres-

ence or absence of different amounts of the aminoglycosides, modified RNA

was detected by primer extension; fluorescent reverse transcripts were

analyzed by capillary electrophoresis with fluorescence detection.

Native Gel Electrophoresis

Transcribed RNA samples were electrophoresed in 10% polyacrylamide gels

in TBE with buffer circulation in the presence or absence of 10 mM KanB.

Crosslinking Analysis of Sisomycin with RNA

Sisomycin and leader RNA with 30 and 50 linkers were mixed in HBS buffer and

UV irradiated at 254 nm for 15 min. An RNA sample with no added sisomycin

was prepared in parallel as a control. The presence of crosslinks between RNA

and sisomycin was measured by the position of abortive reverse transcripts

compared to the UV-treated control RNA in the absence of sisomycin and

reverse transcripts were analyzed by capillary electrophoresis with fluores-

cence detection.
NAaac/aad-lacZa grown on plate without KanB in the presence of IPTG, in the

oth IPTG and KanB.

Aaac/aad-lacZa grown in the presence of IPTG and the aminoglycosides. The

ml 100 mM) and ribostamycin (5 ml 100 mM).

sence of 0, 1.0, 3.5, 4, 4.5 and 5 mM KanB and 0, 0.13, 0.25, 0.5, 1, and 4 mM

rownwith IPTG and the aminoglycosides. Filters were spottedwith: KanB (10 ml

M).
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Supplemental Information includes Extended Experimental Procedures, seven

figures, three tables and one data set and can be found with this article online
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